Analiza obciążeń cystern bimodalnych w uformowaniu kolejowym

Prezentowany artykul stanowi skrót prac analitycznych i obliczeniowych, dotyczących statycznych i dynamicznych obciążeń panujących w głównych węzlach konstrukcyjnych struktury nośnej podwozi ladownych cystern bimodalnych w uformowaniu kolejowym. Przedstawiono szczytowe obciążenia statyczne i dynamiczne występujące w głównych węzlach podwozi. Wartości obciążeń odpowiadające uformowaniu kolejowemu cystern porównano z odpowiednimi wartościami obciążeń występujących w uformowaniu drogowym.

1. WPROWADZENIE

Referat powstał w związku z projektem badawczym KBN Nr 9. T 12C 05808

Przedmiotem analizy są dwa rodzaje cystern bimodalnych (kolejowo-drogowych): przeznaczonych do przewozu paliw ciekłych oraz do przewozu gazów skroplonych (propan - butan). Cysterna bimodalna została przedstawiona na rysunku 1.

Rys. 1. Widok cysterny bimodalnej w uformowaniu kolejowym oraz wspólrzędne uogólnione i podstawowe wielkości geometryczne modelu jednostki bimodalnej w obrębie nadwozia.

Cysterny bimodalne wykonane są w postaci wielokomorowej. W praktycznych zastosowaniach transportowych, każda komora cysterny podlega zawsze binarnemu stanowi ładowności: "0" lub "1". Stan obciążenia kompletnej cysterny bimodalnej podstawowo zależy więc od klasy stanu ładowności (próżna - ladowna) i rodzaju uformowania transportowego (drogowe - kolejowe). Mamy więc 3 pary opcji: przeznaczenia, * kłasy stanu ladowności * i rodzaju uformowania, dające 2³=8 wariantów obliczeniowych:

Celem analizy jest wyznaczenie wartości obciążeń granicznych koniecznych do uwzględnienia w wytrzymalościowych obliczeniach zbiorników cystern. W świetle celu pracy, powyższe warianty obliczeniowe mogą zostać znacznie uproszczone. W kolejowym uformowaniu transportowym jednakże mamy dodatkowe warianty eksploatacyjne ze względu na ściskanie lub rozciąganie obiektu (transportowej jednostki bimodalnej). Przy zastosowaniu śrubowych aparatów cięgłowych i klasycznych zderzaków, rozciąganie jest zawsze centralne, zaś ściskanie obiektu może być zarówno centralne jak i przekątne. Pelne uwzględnienie wariantów obciążeń występujących w uformowaniu kolejowym jest koniecznością niczbywalną. Uzasadnienie powyższego staje się oczywiste w świetle rysunku 2:

Rys. 2. Kolejowe przypadki eksploatacyjne określające warianty obciążeń jednostki transportowej.

Rys. 3. Schematyczne rozmieszczenie punktów wprowadzenia sil do ramy.

Krajowa cysterna bimodalna do przewozu paliw ciekłych jest pięciokomorowa i ma dlugość o 2306 mm mniejszą od podobnej cysterny do przewozu gazów skroplonych wykonanej w postaci 6 komorowej. Każda z tych cystern [wykonanych przez konsorcjum: OBRPS Poznań, ZASTAL Słupsk oraz ZASTAL Zielona Góra] ma podłużne belki wzmacniające zbiornik i uczestniczące w przejmowaniu obciążeń grawitacyjnych, trakcyjnych i dynamicznych. Węzły i belki czolowe oraz czopy i gniazda przyłączy adapterowych są przy tym identyczne.

Rys. 4. Schematyczny szkic adaptera międzynaczepowego "centralnego".

Na rysunku 3 przedstawiono schematyczny szkie wzmacniającej "ramy" cysterny samonośnej do przewozu gazów skroplonych z zaznaczeniem miejse wprowadzenia obciążeń w uformowaniu drogowym i kolejowym.

W krajowym taborze bimodalnym występują dwa rodzaje adapterów niezbędnych dla kolejowego uformowania jednostki bimodalnej: adaptery międzynaczepowe nie zawierające kolejowych urządzeń sprzęgających oraz adaptery krańcowe, wyposażone w takie urządzenia. Na rysunkach 4 i 5 przedstawiono schematy tych adapterów wraz z zaznaczeniem możliwych kierunków działania sił trakcyjnych i dynamicznych.

Rys. 5. Schematyczny zkie adaptera "krańcowego"

Przykładowe szkice rozmieszczenia środków mas w cysternie do przewozu gazów skroplonych przedstawiono na rysunkach 6 i 7. Szkice zostały sporządzone na wypadek analizy wszystkich kombinatorycznych przypadków ładowności poszczególnych komór. W dalszym ciągu zgodnie z celem analizy, wykorzystane zostały przypadki jednorodnych stanów ładowności komór: $0 \lor 1$.

Przyporządkowanie polożenia środka masy kompletnej cysterny samonośnej w stosunku do osi czopów przyłączy

adapterowych i płaszczyzny ich posadowienia na "ramie" wzmacniającej zostało podane w tabeli 1, zgodnie z wymiarami i oznaczeniami naniesionymi na rysunku 8 [1].

Rys. 8. Oznaczenia położeń środków masy: se - środek masy całości obiektu ładownego. Rysunek dotyczy obydwóch cystern.

Cysterna kompletna do przewozu propanu i butanu . Polożenie środka masy według rys. 8

Tabela 1a

WYMIAR [mm]	LSC	H ₂
PRÓŻNA	5824,5	724,6
LADOWNA	6150,5	936,1

Cysterna kompletna do przewozu paliw ropopochodnych. Ppolożenie środka masy według rys. 8

Г	ab	ela	1	b

WYMIAR [mm]	Ler	H ₂
PRÓŻNA	4386	385
LADOWNA	5226	855

W tabeli 2 podano podstawowe parametry dynamiczne obydwóch cystern [1]. Cysterna kompletna do przewozu propanu i butanu. Masa oraz centralne masowe momenty bezwład-ności według rys. 8

Tabela 2a

PARAMETR	PRÓŻNA	LADOWNA
MASA CALK. [kg]	14633,8	35422.5
$J^{o}_{x}[Ns^{2}m]$	15856,9	15926
J° _Y [Ns ² m]	198522,7	225484,3
$J_{z}^{o}[Ns^{2}m]$	194000,4	220892,9

Cysterna kompletna do przewozu paliw ropopochodnych. Masa oraz centralne masowe momenty bezwladności według rys. 8 Tabela 2b

PARAMETR	PRÓŻNA	LADOWNA
MASA CALK [kg]	9500	36280
J°x [Ns ² m]	11478	15565
J° _Y [Ns ² m]	~81000	~288000
J°z [Ns ² m]	80837	283512

2. GRANICZNE OBCIĄŻENIA (QUASI)STATYCZNE. [2]

Do omawianych poniżej obciążeń quasistatycznych, oprócz autentycznie statycznych (wyżej podanych) obciążeń grawitacyjnych, zaliczymy graniczne (dopuszczalne) obciążenia pochodzące od ustalonych niezrównoważonych poprzecznych sił w łuku toru kolejowego oraz podłużne siły trakcyjne według wymagań UIC. Łączne ujęcie sił i momentów daje zastępcze obciążenia pionowe:

Zastępcze obciążenie pionowe, przypadające na pojedynczą naczepę bimodalną, działające w plaszczyźnie czopów $R_{1Z} = R_{11Z} = 206,88[kN]; R_{2Z} = R_{10Z} = 113,45[kN];$

Według przeprowadzonych obliczeń zgodnie z wymaganiami karty UIC 530-2, na czopie skrętu, pomiędzy wózkiem i adapterem, obciążenia poprzeczne wynoszą:

- dla wózka "centralnego" czyli międzynaczepowego, F_{y cen} =70,124 [kN]
- dla wózka "skrajnego" czyli wyposażonego w aparat cię głowy i zderzaki, F_{v skr} =83,26 [kN].

Graniczne obciążenia podłużne ściskające przekątne oraz symetryczne, działające 50 mm poniżej osi zderzaka, wynoszą 425 [kN]; tylko symetryczne w osi każdego zderzaka -500 [kN], razem 1000 [kN].

Graniczne obciążenia podłużne rozciągające na haku, od 850 [kN] zwiększane stopniowo do 1000 [kN] w zakresie odkształceń sprężystych i do 1700 [kN] w zakresie odkształceń plastycznych.

Oznaczone jako $|R_1 P/L|$, graniczne obciążenia pochodzące od skręcania jednostki bimodalnej podczas przechodzenia przez tor wichrowaty w obrębie tak zwanej "rampy przechyłkowej", wynoszą: $|R_1 P/L| = 275$ [kN].

Obciążenia quasistatyczne poprzeczne zostały w dalszym ciągu przyjęte jako stałe, z niewielkim nadmiarem, wedlug tzw. kryterium Prudhomme'a [2], o wartości wynoszącej na czopie skrętu wózka $F_y = 83,26$ [kN].

Obciążenia w węzłach ramy zgodnie z rysunkami 3, 4 i 5, bez obciążeń "skręcających", pochodzące od wyżej wspomianych sił, wyznaczone w wyniku analizy statyki adapterów, zostały zestawione w tabelach 3 i 4, poprzedzonych rysunkami 9 i 10.

Rys. 9. Naczepa rozciągana silami trakcyjnymi; przypadki według rysunku 2.

Rys. 10. Naczepa ściskana w warunkach eksploatacyjnych; numeracja przypadków według rysunku 2.

Nadwezie rozciągane

Tabela 3

Reakcja	R1PX	RILX	R1PY	RILY	RIPZ	RILZ	R2Y	R2Z
[kN]	R11PX	RIILX	R11PY	RIILY	RIIPZ	RIILZ	R10Y	R10Z
wartość MAX	532,5- može ew. jeden 10	+532,5 pracować 1 czop 165	(+/-)) prakty pracuje ji P lu	114,72 ycznie eden czop 1b L	332,41. w przypac nierówny po-międ	/281,35 Ikach 2 i 3, podzial sil izy czopy	(+/-) 31,54	(-) mim.s! 313,45

UWAGA! W powyższej (3) i w poniższej tabeli (4) nie uwzględniono obciążeń pochodzących od ramp przechyłkowych (skręcanie nadwozia). Obciążenia te należy uwzględnić oddziełnie.

Nadwozie ściskane

Tabela 4

Reakcja	RIPX	RILX	RIPY	RILY	R1PZ	R1LZ	R2Y	R72
[kN]	RIIPX	RIILX	RIIFY		R11PZ	R11LZ	RIOY	R102
wartość MAX	532,5 može ew. jøder l0	+532,5 pracować czop 165	(+/-) prakt pracuj jeder P te	130,3 yeznie e tylko rezop rb L	132,41 w przypac nierówny po- międ	1/81,35 Ikach 5 i 6, podział sił Izy czopy	(+/-) 130,3	(+) plus! 228,1

Zgodnie z powyższymi zestawieniami obciążeń, najwyższe wartości obciążeń pionowych, poprzecznych i podłużnych w poszczególnych punktach ramy, dla wszystkich przypadków eksploatacyjnych, (bez skręcania nadwozia), zostały podane w tabeli 5. Oznaczenia punktów według rysunków 3, 4, 5, 9 i 10.

Nadwozie ściskane lub rozciągane

							1	abela 5
Reakcija [kN]	RIPX RIIPX	RILX RIILX-	RIPY RIIPY	RILY RIILY	RIPZ. RIIPZ	R1LZ R11LZ	R2Y RIOY	R2Z R1DZ
wartość MAX	532,5- može ew. jøder 10	+532,5 pracować a czop 165	13 prakty pracuj jeder P lu	0,3 ycznie ie tylko i czop ib L	332,41/281,35 w przypadkach 5 i 6, nierówny podział sił po- iniędzy czopy		130,3	313,45

3. MIARODAJNE OBCIĄŻENIA DYNAMICZNE

Zgodnie z celem pracy, wyznaczone wartości obciążeń mają służyć jako podstawa do obliczeń wytrzymalościowych zbiornika cysterny. Niniejszy rozdzial zostal więc poświęcony obciążeniom dynamicznym, które będą określać wytrzymałość zmęczeniową zarówno węzłów "ramy" jak i zbiornika. Biorąc pod uwagę zarówno kolejowe zasady obliczeń wytrzymalości "wysokocyklicznej" jak też specyfikę obliczania zbiorników z należytym zapasem bezpieczeństwa (doraźnego i korozyjnego), w dalszym ciągu przyjęto, że najistotniejszą informacją w tym zakresie jest liczbowa wartość odchylenia standardowego obciążeń statycznych występujących w danym węźle. Analiza niniejsza jest więc ukierunkowana jedynie ku klasycznemu podejściu obliczeniowemu [w sensie wykresów Smitha, Haigh'a, Goodmana i Wöhlera].

Obciążenia dynamiczne poprzeczne, zgodnie z symulacjami wykonanymi w dziedzinie czasu w pracy [5], osiągają najwyższe wartości amplitudalne w gniazdach czopów skrętu, według zestawienia zawartego w tabeli 6:

Szczytowe dynamiczne obciążenia poprzeczne

			T abora o
PREDKOSC [m/s]	10	30	50
OBCIĄŻENIE DYN. [kN]	13	17	30
OBCIĄŻENIE QUASISTAT. [kN]	83,26	83,26	83,26
DYN. / STAT. [%]	15,6	20,4	36

Dynamika pionowa trójczłonowego zespolu bimodalnego była badana w pracy [4] w dwóch podstawowych wariantach przepustowości dynamicznych: (A) wymuszenia działającego w obrębie pierwszego wózka oraz (B) - w obrębie drugiego wózka, według szkiców modelowych przedstawionych na rysunkach 11 i 12.

Rys. 11. Szkie do analizy pierwszej grupy przepustowości dynamicznych.

Obciążenia dynamiczne pionowe, pochodzące od wynuszeń działających w obrębie pierwszego wózka w trójnaczepowym zespole bimodalnym, według pracy [4], osiągają następujące wartości wyznaczone dla prędkości 40 [m/s], dość znacznie przewyższającej prędkość eksploatacyjną taboru bimodalnego w uformowaniu kolejowym. Dane 22 brano w tabeli 7.

Rys. 12. Szkie do analizy drugiej grupy przepustowości dynamicznych-

Pionowe obciążenia dynanuczne przy wymuszeniach wózka 2

				1 direia
NUMER CZOPA SKRETU	. I	2	3	4
OBCIĄŻENIE DYN. [kN]	1.84	1,54	1,13	0,73
DYN./STAT. [%]	0,76	0,64	0,47	0,30

Podobne obciążenia w przypadku wymuszeń działających w obrębie drugiego wózka przedstawiono w tabeli 8.

Pionowe obciążenia dynamiczne przy wymuszeniach wózka 1

				Lanela &
NUMER CZOPA SKRETU	1	2	3	4
OBCIĄŻENIE DYN. [kN]	1.793	4,108	2,619	1,317
DYN. / STAT. [%]	0,74	1,702	1,08	0,54

W tabelach 7 i 8, jako statyczną bazę odniesienia, przyjęto dane zawarte w tabeli 5: sily R_{1LZ} oraz R_{1PZ} , o wartości 332,41 [kN], razem 664,82 [kN], przeliczone według rysunków 4 i 5 na czop skrętu, dając wartość 241,26 [kN]. Wyrażone w % obciążenia statycznego obciążenie dynamiczne, w adapterach i węzłach "ramy" cysterny w praktyce wyraża udział dynamiki w każdym węźle systemu przyłącza adapterowego.

4. PODSUMOWANIE

Tabula 6

Przedstawione wyniki stanowią podstawę do obliczeń wytrzymalości doraźnej i zmęczeniowej. Najwyższy udział składowej dynamicznej w uformowaniu kolejowym w praktyce występuje w obciążeniach poprzecznych (ok. 20%). Dynamiczne obciążenia pionowe w uformowaniu kolejowym są znikome; najwyższy udział procentowy wynosi ok. 1,7%. W uformowaniu drogowym procent ten nierzadko osiąga wartość 50%.

Dla pelniejszego porównania dynamiki uformowania kolejowego z uformowaniem drogowym, poniżej zamieszczono tabelę 9 zaczerpniętą z pracy [3]. Dane dotyczą pionowych obciążeń [wieszaków] osi kół drogowych cysterny ładownej. W tym miejscu należy przypomnieć, że punktów podparcia osi drogowych jest na "ramie" aż 12. Odnośnie dynamiki poprzecznej w uformowaniu drogowym - brak danych. tosunek obciążeń: statyczne / dynamiczne [%]

		Tabela 9
10	20	35
6,475	9,747	13.560
13 480	20,291	28.228
28,958	43,590	60.643
	10 6,475 13 480 28,958	10 20 6,475 9,747 13 480 20,291 28,958 43,590

5. LITERATURA:

[1] Madej J. Marzec Z. Matej J.; Analiza granicznych quasistatycznych obciążeń nadwozi bimodalnych w uformowaniu kolejowym. (część pierwsza - parametry dynamiczne cystern); Praca nieopublikowana wykonana w ramach grantu KBN Nr 9 T12C 05 08; Warszawa, lipiec 1995;

[2] Kostro J. Madej J. Matej J.: Analiza granicznych quasistatycznych obciążeń nadwozi bimodalnych w uformowaniu kolejowym. (część druga - trakcyjne i eksploatacyjne obciążenia quasistatyczne cystern); Praca nieopublikowana wykonana w ramach grantu KBN Nr 9 T12C 05 08; Warszawa, kwiecień 1996; [3] Ahel. S. O.: Wyznaczenie obciążeń dynamicznych w węzlach oparcia cysterny bimodalnej w uformowaniu drogowym. Praca nieopublikowana wykonana w ramach grantu KB. r 9 T12C 05808; Warszawa, lipiec 1995;

[4] Madej J. Matej J.: Wyznaczanie obciążeń dynamicznych w węzłach oparcia ramy nadwozia bimodalnego. Praca nieopublikowana wykonana w ramach grantu KBN 'r 9 T12C 05 0 ; Warszawa, grudzień 1996;

[5] Madej J. Matej J.: Analiza obciążeń poprzecznych dla szynowych pojazdów bimodalnych przy kinematycznych wymuszeniach od toru kolejowego. Nieopublikowana praca badawcza własna. Warszawa 1966.

[6] Madej J.: Analiza sprężystej struktury cysterny bimodalnej na wózkach 25 TN. Opracowanie nieopublikowane., wykonane w ramach projektu KBN Nr 3. 1174. 91. 01. Warszawa, grudzień 1993.