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ARTICLE INFO  The article presents the application of convolutional neural networks (CNN) for the 

classification of electrical resistance measurements of railway wheelsets. The aim of the 

study was to develop a model capable of automatically detecting incorrect measurement 

results based on data obtained from various measurement configurations. The training 

process used experimental data collected under real-world conditions. The developed 

model achieved high classification accuracy and was tested on variable-length data. The 

study demonstrates that CNN-based methods can be effectively applied in the diagnostics 

of measurement systems. 
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1. Introduction 

The accuracy and reliability of wheelset resistance 

measurements are critical for the safe operation of rail 

vehicles and for proper interaction with detection sys-

tems based on the short-circuiting of track circuits by 

the vehicle’s wheelsets, which are used in railway 

traffic control (RTC). These measurements are subject 

to various types of disturbances and errors arising 

from material inhomogeneity (e.g. of the probe or 

wheel material) and changing electrical contact condi-

tions (e.g. contamination). 

In traditional data analysis, error detection is typi-

cally based on fixed thresholds or statistical analysis. 

However, in cases of high data variability, these 

methods may prove insufficient. An alternative ap-

proach involves the use of artificial intelligence meth-

ods, including convolutional neural networks (CNNs), 

which are known for their high effectiveness in classi-

fication and pattern recognition tasks. 

Choi et al. [1] presented a method for detecting rail 

surface defects using a Fast R-CNN model designed 

for object detection in images. They worked on a da-

taset composed of rail surface images, which, once 

classified, formed a database of defect and non-defect 

images. In [8], an improved version of Mask R-CNN 

was introduced for rail defect detection, achieving 

very high accuracy (mAP 98.7%) through the use of 

feature fusion (DFPN) and the CIoU metric. This 

method allows for precise detection of even minor 

defects without significantly increasing computational 

complexity. Jwo [3] proposed an intelligent press-fit 

assembly support system for wheelsets (wheel mount-

ing on axles) based on deep learning. The authors 

used moment and displacement data during the press-

fitting process to assess assembly quality. These data 

were processed using LSTM and CNN models, which 

classified operations as ‘correct’ or ‘faulty’. The sys-

tem demonstrated the ability to detect mounting issues 

early, enabling the elimination of defective compo-

nents and improving fleet reliability. In [12], for 

wheel slip detection, the authors proposed a hybrid 

approach based on operational data, combining unsu-

pervised and supervised learning methods. 

Considering the growing trend of using neural 

networks in railway applications, a CNN model was 

developed and tested to classify wheelset resistance 

measurement results as either valid or faulty. The 
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model is based on real measurement data collected 

using a milliohmmeter operating in a four-wire Kelvin 

configuration, across various measurement setups: 

symmetric points, variable probe positions, and 

swapped wiring. The trained model was ultimately 

applied to the analysis of new, previously unlabelled 

measurement data. 

2. Methodology 

To classify the results of wheelset resistance meas-

urements, an approach based on convolutional neural 

networks (CNN) was applied. The networks were 

implemented in Python using the TensorFlow library. 

The process of data preparation, model construction, 

and training was carried out in several stages: 

2.1. Data preparation 

The training data were collected during real-world 

measurements of wheelset resistance in various con-

figurations: 

 measurements at symmetrical points on the tread 

surface and the flange of the wheel 

 sweeping one measurement probe along the wheel 

while keeping the other probe stationary 

 swapping the measurement leads in the probes to 

assess the influence of polarity on the measure-

ment results. 

The measurement results were saved in CSV for-

mat, with each column representing one measurement. 

The last row of the dataset contained classification 

labels (0 – correct measurement, 1 – incorrect meas-

urement). The data were normalized using standardi-

zation (StandardScaler) and then reshaped into  

a three-dimensional format required by the input layer 

of the CNN model (samples, number of measurement 

points, channel = 1). 

2.2. CNN model architecture 

The neural network model consisted of two one-

dimensional convolutional layers (Conv1D), each 

followed by a batch normalization layer (BatchNor-

malization) and a max pooling layer (MaxPooling1D). 

Below is the representation of the 1D convolution 

operation used in the CNN: 

 (y ∙ w)(t) = ∑ x(t + k) ∙ w(k)k−1
k=0   (1) 

where: x – input signal, w – convolution kernel (fil-

ter), k – kernel length, t – sample position index. 

After data flattening (Flatten), a dense layer 

(Dense) and a dropout layer (Dropout) were added to 

reduce the risk of overfitting. The final layer used the 

sigmoid activation function, enabling binary classifi-

cation. 

 

2.3. Model training 

The model was trained using data from various 

measurement configurations. The training process 

employed the Adam optimization algorithm and the 

binary cross-entropy loss function. The binary cross-

entropy loss is defined as follows: 

 L(y, ŷ) = −
1

N
∑ [yilog(ŷi) + (1 − yi)log(1 − ŷi)]
N
i=1   (2) 

where: yᵢ – true label of the sample, ŷᵢ – predicted 

probability from the classifier, N – number of samples. 

To prevent overfitting, the EarlyStopping mecha-

nism was used, which halted training after several 

epochs without improvement in the validation loss. 

Class imbalance was also addressed by applying class 

weights (class_weight). Figure 1 shows an example of 

the model's accuracy plot over successive training 

epochs. It compares the accuracy on the training and 

validation sets, allowing an assessment of whether the 

model is learning properly and if overfitting occurs. 

 

Fig. 1. Accuracy of the CNN model across epochs for one of the model 

 configurations during model training 

Figure 2 shows how the model's prediction proba-

bilities are distributed across all samples. The X-axis 

represents the probability assigned to a class, while 

the Y-axis shows the number of samples with that 

probability. This allows for an assessment of the mod-

el's confidence and the identification of potential mis-

classifications or uncertain predictions. 

 

Fig. 2. Probability of error for one of the model configurations during 
 model training 



 

Application of 1D convolutional neural networks for anomaly detection… 

RAIL VEHICLES/POJAZDY SZYNOWE  X, 0000 29 

2.4. Model testing 

After the training process was completed, the mod-

el was saved in the .keras format. A separate script 

was prepared for testing, allowing the analysis of new 

measurement data – even when the input samples had 

variable lengths. Through appropriate preprocessing 

steps (zero-padding or trimming), the test data could 

be analyzed while maintaining compatibility with the 

model’s input requirements. The figure below pre-

sents a general overview of the CNN model architec-

ture. 

 

 Fig. 3. General CNN model architecture 

The described approach enables fast and accurate 

classification of resistance measurement results and 

can be adapted to various measurement configura-

tions. 

3. Research results 

To evaluate the effectiveness of the developed 

CNN model, training was performed using wheelset 

resistance measurement data covering various exper-

imental configurations. The training dataset contained 

834 samples, of which 482 were labeled as incorrect. 

The model achieved high accuracy after several dozen 

epochs, and the EarlyStopping mechanism terminated 

the training once optimal parameters were reached. 

Figure 4 presents the model's accuracy plot over suc-

cessive training epochs for the final CNN model. 

 

 Fig. 4. Target CNN model accuracy 

Figure 5 shows the distribution of the model's pre-

diction probabilities across all samples for the final 

CNN model. 

 

 Fig. 5. Error probability 

After completing the training, the model was ap-

plied to a new set of unlabeled measurement data. 

Each sample was classified along with a calculated 

error probability. An example result: 

 
 Sample 1: Probability = 0.0032 → Prediction: 0 (correct) 

 Sample 2: Probability = 0.9811 → Prediction: 1 (incorrect) 

The model demonstrated a high classification accu-

racy of 95%, particularly for test samples with a struc-

ture similar to the training data. For a second dataset, 

derived from a different measurement configuration, 

the model's accuracy was slightly lower, suggesting 

the need to further expand or unify the training da-

taset. 

To improve prediction quality, the impact of vari-

ous hyperparameters was tested, including: 

 the number of filters in the Conv1D layers 

 kernel sizes 

 dropout values 

 number of epochs and batch size. 

The best performance was achieved with the fol-

lowing configuration: 

 2 Conv1D layers (64 and 128 filters) 

 convolutional kernel size of 5 

 dropout = 0.5 

 Adam optimizer 

 batch size = 2. 

The classifier’s performance was also verified by 

calculating accuracy, precision, and recall. For the test 

dataset, the following results were achieved (Table 1). 

Table 1. Classifier effectiveness 

Class Precision Recall F1-score Support 

0 (correct) 0.89 1.00 0.94 8 

1 (incorret) 1.00 0.94 0.97 16 
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Which translates to: 

 Accuracy: 96% 

 Precision: 94% 

 Recall: 97% 

 F1-score: 95%. 

4. Discussion 

The obtained results confirm the effectiveness of 

using convolutional neural networks for the classifica-

tion of wheelset resistance measurement data. The 

CNN model, trained on a dataset that included various 

measurement configurations (symmetrical points, 

probe sweeping, lead swapping), successfully learned 

to distinguish between correct and incorrect results. 

The model’s high accuracy, achieved after only 

several dozen epochs, indicates both the good quality 

of the training data and the suitability of the network 

architecture. Particularly important were the use of 

data normalization and the EarlyStopping mechanism, 

which helped prevent overfitting. 

However, it was observed that when applying the 

model to data obtained under different measurement 

conditions, the prediction accuracy could deteriorate. 

This is most likely due to the limited diversity of the 

training dataset. In practice, this suggests that to ob-

tain a stable and generalizable model, it may be neces-

sary to collect a larger number of samples from vari-

ous measurement environments. 

An important advantage of the proposed approach 

is the ability to classify new measurement data with-

out the need for manual interpretation. The model is 

capable of automatically identifying samples that are 

likely to contain errors, which can be used in diagnos-

tic systems or for the automatic rejection of faulty 

measurements. 

In the future, the model can be further improved 

by: 

 expanding the dataset to include other types of 

disturbances 

 applying data augmentation techniques 

 implementing a multi-class classifier for different 

types of measurement errors 

 deploying the solution to edge environments (edge 

AI) in measurement devices. 

4. Summary 

In this study, a convolutional neural network 

(CNN) model was developed and validated for the 

classification of wheelset resistance measurement 

results as either correct or incorrect. The model was 

trained on real-world data obtained from various 

measurement configurations. 

The key findings of the study are as follows: 

 High classification accuracy – the model achieved 

over 95% accuracy on validation data, confirming 

its usefulness in detecting incorrect measurements. 

 Generalization capability – despite a limited num-

ber of samples, the model was able to correctly 

classify measurement data not included in the 

training set, provided their characteristics did not 

differ significantly from the training data. 

 Practical applicability – the proposed approach 

enables automatic support for the diagnostics of 

wheelset resistance measurements and can be inte-

grated with existing measurement systems. 

 Potential for further development – increasing the 

number of samples, diversifying the dataset, and 

adapting the model to other electrical parameters 

(e.g. impedance) may broaden the scope of appli-

cation. 

The developed tool represents a first step toward 

the implementation of machine learning in quality 

control and measurement verification under real-

world conditions. It may serve as a foundation for 

further research in the field of railway vehicle condi-

tion monitoring. 

 

Nomenclature

AI artificial intelligence 

CIoU complete intersection over union 

CNN convolutional neural networks 

DFPN double feature pyramid network 

Fast R-CNN fast region-based convolutional net-

work method 

LSTM long short-term memory 
mAP mean average precision 

Mask R-CNN mask region-based convolutional neural 

network 

RTC  railway traffic control 
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