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ARTICLE INFO  The subject of the paper is the three-span rail (UIC 60) simply supported on four sleepers. 

The middle span is subject to the concentrated force at half of its length. The goal of the 

investigation is to analyse the influence of the shear stresses on the bending of the reail. 

For this reason analytical study of the bending problem of the three parts of this rail is 

realized with consideration of the Timoshenko beam theory. Moreover, the problem is 

studied numerically using the finite element method (FEM). Based on the obtained analyti-

cal results it is seen that structures like rails, which between the speepers can be treated as 

short beams, should be analysed with shear effect taking into account. The result obtained 

this way is consistent with the results of numerical investigation. Ignoring the shear effect 

results in a significant underestimation of the deflection. The obtained analytical solution 

may serve as a simple tool for designing I-beam-like structures having in mind the shear 

stresses.  
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1. Introduction  

Modern railways require tracks capable of carrying 

the loads of high-speed trains and at the same time 

compliant with safety regulations. To meet these re-

quirements proper design and structural analyses are 

necessary to describe the behaviour of rail tracks un-

der the load of trains. The problems that may arise 

during design can be analysed in the laboratory and 

this approach is widely used. However, nowadays the 

analysis of many phenomena is possible using numer-

ical tools. One of them is the finite element method 

(FEM) which is also used in railway tracks related 

problems. An example is the work by Al Gharavi et 

al. [5] in which a three-point bending test is made for 

bolted and welded connection in the UIC 60 rail both, 

using experiment and FE analysis. He et al. [6] used 

FEM to analyse the wear phenomenon and contact 

stress which appear at the junction of the wheel and 

the rail. 

Another typical problem is the failure analysis 

which can be related either to the rail, the head of 

which is prone to fatigue cracking as shown by Afridi 

et al. [1] in FEM/BEM simulations or to the concrete 

sleeper in which corrosion as well as cracks may ap-

pear during exploitation as presented by Camille et al. 

[3] in experimental tests. A well-known problem in 

rail transportation is the rolling noise. It is related to 

the vibrations of the rail which can be analysed with 

the FEM as shown by Knuth et al. [10]. Authors pre-

sent the model which gives the possibility to take into 

account the change of the cross-section's shape result-

ing from vibrations.   

Under the load the rail bends between the sleepers 

and its deflection, related to the spacing of the sleep-

ers and shape of the cross-section of the rail, influ-

ences the behaviour of the whole railway track. To 

analyse the deflection the rail must be treated like a 

beam on multiple supports and calculated taking into 

account the shear stresses. Thus, a proper beam theory 

must be applied. Timoshenko [14] in 1921 initiated 

the analytical consideration of the shear effect in 

beams. Gere and Timoshenko [4] described in detail 

the problems of tension-compression of bars, torsion 

of shafts, bending of beams with consideration of  

a shear effect, theory of thin-walled open sections, an 

inelastic bending of beams, and buckling problems of 

columns. Wang et al. [16] presented in the following 
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chapters the beam theories: Euler-Bernoulli (EBT), 

Timoshenko (TBT), Reddy-Bickford (RBT). Authors 

also analysed the relationships between (EBT) and 

(TBT) theories as well as between (EBT) and (RBT). 

The applications of these theories in plate analysis 

were also investigated. Hutchinson [7] presented the 

Timoshenko beam theory, taking into account a new 

formula of the shear coefficients for various beam 

cross sections. Kennedy et al. [9] developed a novel 

theory of layered orthotropic beams taking into ac-

count the Timoshenko beam theory and determined 

new expressions for the shear correction factor. Roque 

et al. [13] analysed the bending behaviour of laminat-

ed composite beams using a modified couple stress 

theory and a meshless method taking into account the 

Timoshenko beam theory. 

Romanoff and Reddy [12] carried out experimental 

validation of the modified Timoshenko beam theory 

for sandwich panels and experimentally demonstrated 

the correctness of the developed theory. Wang et al. 

[15] studied analytically and numerically wave propa-

gation in metal foam beams based on the Euler–

Bernoulli and Timoshenko beam theories. The porosi-

ty distribution in the depth direction of these beams 

was symmetrical and asymmetrical. Katili et al. [8] 

developed the two-node beam element with Hermitian 

functions (4 degrees of freedom in the node) with 

consideration of the modified Timoshenko beam theo-

ry and studied natural frequencies of rectangular func-

tionally graded material (FGM) beam with different 

boundary conditions. Nampally and Reddy [11] pre-

sented the von Kármán nonlinear strains and the non-

linear Cosserat deformation gradient for the moderate 

rotations of normal planes into the Euler–Bernoulli 

and the Timoshenko micropolar beam theories. More-

over, they presented numerical examples illustrating 

the influence of the number of couplings and the 

length scale of the bending characteristic on the de-

flections and microrotations. Ahmed and Rifai [2] 

highlighted the important problem of understanding 

the strategy of the method of analysis relating to the 

physical basics of the problem and mastering mathe-

matical tools. They presented a detailed review of 

Euler-Bernoulli and Timoshenko beam theories and 

their applications in analytical and numerical studies 

of beams and plates. 

The subject of the present work is the three-span 

standard rail (UIC 60) of total length 3L and depth h 

simply supported on four sleepers (Fig. 1). The middle 

span is subject to the concentrated force at half of its 

length.  

 

Fig. 1. Scheme of three rail spans with load – force F  

The main goal of this paper is analytical and nu-

merical (FEM) studies of the rail deflections under the 

concentrated force and their comparison.  

2. Analytical study of the rail bending  

Analytical study of the beam bending is carried out 

according to Timoshenko beam theory. Thus, taking 

into account the book [2], the differential equation of 

the beam deflection line, with consideration of the 

shear effect, is in the following form  

 EJz
d

2
v

dx2 = −Mb(x) + 2(1 + ν)
Jz

A
αs

dT

dx
  (1) 

and after integration  

 EJz
dv

dx
= C1 − ∫ Mb(x)dx + 2(1 + ν)

Jz

A
αsT(x) (2) 

where: v(x) – deflection, Mb(x) – bending moment, 

T(x) – transverse shear force, αs – shear coefficient, 

Jz – inertia moment of the cross section, A – area of 

the cross section, E – Young’s modulus, ν – Poisson 

ratio.  

The shear coefficient αs, based on the book [2], is 

approximately defined for I-beam cross section as 

follows  

 αs =
A

Aw
  (3) 

where the area of the web  

 Aw = bwhw (4) 

In the above formula bw is the web thickness and 

hw is the web depth. This expression (3) can be con-

veniently applied to the analytical study of the rail 

bending.  

2.1. Analytical determination of the rail deflection  

This three-span rail (Fig. 1) is a symmetrical con-

struction, therefore, the analytical model is developed 

for its half (Fig. 2).  

 

Fig. 2. Scheme of loads acting on the rail  
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Based on Fig. 2 the equilibrium equation, the bend-

ing moment in the middle of the rail, has the form 

 Mo =
3

4
FL − R1L (5) 

Analytical determination of deflections in success-

sive spans (Fig. 2) will be described in two steps, sep-

arately for the middle and the right span. First, for the 

middle span the coordinate x varies within the range 

0 ≤ x ≤
1

2
L. The internal forces have the form 

 T1(x) = −
1

2
F (6) 

 Mb1(x) = Mo −
1

2
F x (7) 

Taking into account equation (2), after simply 

transformation, it can be written as 

 EJz
dv1

dx
= −Mox +

1

4
Fx2 − (1 + ν)

Jz

Aw
F  (8) 

Integrating this equation, one obtains  

 EJzv1(x) = C2 −
1

2
Mox2 +

1

12
Fx3 − (1 + ν)

Jz

Aw
Fx (9) 

From the condition v1(L 2⁄ ) = 0, the integration 

constant can be determined in the form 

 C2 =
1

8
MoL2 −

1

96
FL3 + (1 + ν)

Jz

Aw
FL  (10) 

Thus, the deflection line of the middle half of the 

span in the dimensionless coordinate ξ = x L⁄ , is in 

the following form  

 v1(ξ) =

[12(1 − 4ξ2)M̅o − 1 + 8ξ3 +

                           +48(1 + ν)
Jz

AwL2
(1 − 2ξ) ]

FL3

96EJz
, (11) 

where: M̅o =
Mo

FL
 – unknown dimensionless moment in 

the middle of the rail.  

Second, for the right span the coordinate x varies 

within the range 
1

2
L ≤ x ≤

3

2
L, and the internal forces 

take the following form 

 T2(x) =
1

2
(2R1 − F)  (12) 

 Mb2(x) = Mo −
1

2
F x + R1 (x −

1

2
L) (13) 

Taking into account the equation (2), after simply 

transformation, it can be written as 

 EJz
dv2

dx
= C3 − Mox +

1

4
Fx2 −

1

2
R1(x2 − Lx) +

                      +(1 + ν)
Jz

Aw
(2R1 − F)  (14) 

From the condition dv1 dx⁄ |L 2⁄ = dv2 dx⁄ |L 2⁄ , the 

integration constant can be determined in the follow-

ing form 

 C3 = −
1

8
[1 + 16(1 + ν)

Jz

AwL2] R1L2  (15) 

Therefore, the equation (15) is in the form  

 EJz
dv2

dx
= −Mox +

1

4
Fx2 −

1

8
R1 (L2 − 4Lx + 4x2) −

                 −(1 + ν)
Jz

Aw
F    (16) 

Integrating this equation, one obtains  

 EJzv2(x) = C4 −
1

2
Mox2 +

1

12
Fx3 −

1

8
R1 (L2x −

                      −2Lx2 +
4

3
x3) − (1 + ν)

Jz

Aw
Fx   (17) 

Taking into account two conditions v2(L 2⁄ ) = 0 

and v2(3L 2⁄ ) = 0, after simply transformation, one 

obtains the integration constant  

 C4 =
1

8
 MoL2 −

1

96
FL3 +

1

48
R1L3 + 

                                              +
1

2
(1 + ν)

Jz

Aw
FL  (18) 

and  

 M̅o =
7

40
−

6

5
(1 + ν)

Jz

AwL2  (19) 

 R̅1 =
23

40
+

6

5
(1 + ν)

Jz

AwL2  (20) 

where: R̅1 = R1 F⁄  – the dimensionless reaction.  

Thus, the deflection line of the right span in the 

dimensionless coordinate ξ = x L⁄ , is in the following 

form 

v2(ξ) =

[12(1 − 4ξ2)M̅o − 1 + 8ξ3 +

                             +2(1 − 6ξ + 12ξ2 − 8ξ3)R̅1  +

                            +48(1 + ν)
Jz

AwL2
(1 − 2ξ) ]

FL3

96EJz
 (21) 

Therefore, the maximum deflection of the rail in 

accordance with the solution taking into account the 

shear effect can be determined from the following 

formula 

 vmax
(An) = v1(0) = [12M̅o − 1 + 48

Jz

AwL2]
FL3

96EJz
  (22) 

For comparison, the maximum deflection of the 

rail without the shear effect is as follows  

 vmax
(wo)

= [12M̅o − 1]
FL3

96EJz
  (23) 

where: M̅o = 7 40⁄ .  

 

2.2. Results of analytical calculation of the rail  

deflection  

The data of the three-span rail (UIC 60) are as fol-

lows:  

A = 7686 mm2,     Jz = 3055 ⋅ 104 mm4   



 

Bending of the three-span rail (UIC 60) subjected to the concentrated force 

RAIL VEHICLES/POJAZDY SZYNOWE 1-2, 2025 35 

L = 600 mm,   h = 172 mm, λ = L h⁄ ≅ 3.5  

E = 200000 MPa,     ν = 0.3,  bw = 16.5 mm  

hw = h − (13.3 + 37.5 2⁄ ) = 140 mm  

Aw = bwhw = 2310 mm2.  

Thus, the maximum deflection value of the rail 

(22) is as follows vmax
(An) = 0.1100 mm. While the max-

imum deflection value of this rail without the shear 

effect (23) is vmax
(wo)

= 0.04472 mm.  
The form of the rail deflection line is shown in Fig. 3.  

 

Fig. 3. Scheme of the deflection line of three-span rail  

3. Numerical FEM studies of the rail bending  

3.1. Numerical FEM model of the rail  

Numerical analyses have been performed with the 

use of Ansys software. The goal was to determine the 

deflection of the rail thus the linear elastic analysis 

has been performed with small deflection assumption 

and linear elastic material model. Assumed parame-

ters for the material were: Young’s modulus  

E = 200,000 MPa and Poisson ratio ν = 0.3.  

Due to the symmetry of the problem a half of the 

UIC 60 rail has been modelled with proper boundary 

conditions in the mid-length. For comparison reason 

two variants of boundary conditions have been con-

sidered. First one, corresponding to actual structure 

(Fig. 4a), in which the rail was supported at the bot-

tom and loaded at the upper face. To avoid stress con-

centration and local indentation due to point boundary 

conditions the support was realised on the rectangle 

which spread about 1 mm from the actual edge in both 

directions. In turn, the load was applied to an ellipse-

shaped surface whose dimensions were 105 mm.  

At the support only vertical displacements were 

blocked; horizontal displacement was prevented by 

symmetry conditions. Additionally, to avoid a rigid 

body motion the displacement along the x axis was 

prevented at one point in the mid-length of the rail. 

The second variant of boundary conditions corre-

sponds to the analytical model which means that they 

were applied at the neutral axis. For this reason, the 

remote boundary conditions and remote force options 

were used available in the system. The conditions 

were applied to the whole cross-section and brought to 

the centroid of this section as shown in Fig. 4b.  

To discretize the model a second order solid finite 

element solid187 has been used with three degrease of 

freedom in each node. Most of elements were tetrahe-

drals with 10 nodes. The size of the element has been 

set to 4 mm which gave in total about 677,000 ele-

ments. For improving the application of actual bound-

ary conditions, the size was decreased to 1 mm at the 

support and at the point of force application. The size 

of the element was established based on the mesh 

convergency analysis performed for elements ranging 

in size from 3 to 8 mm which resulted in meshes con-

sisting of 132,843 and 1,337,870 nodes, respectively. 

The corresponding maximum deflection v was equal 

to 0.11975 and 0.11964 mm which suggest that even  

the biggest size of the element could be used in anal-

yses. However, the selected value of 4 mm provides 

a smooth distribution of stress and does not require 

high computational power. 

 

Fig. 4. FE model of the rail: a) actual support conditions; b) support at cross-section  
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3.2. Results of numerical FEM calculation of the rail 

deflection 

The results of analyses for both FE models are 

shown in Fig. 5 in the form of plots. Additionally, for 

the model with actual boundary conditions the vertical 

displacement of the whole model has been presented 

in Fig. 5a. 

On both plots the horizontal axis corresponds to 

the length of the rail whereas the vertical one presents 

the deflection of the rail. Two solutions are shown. 

The first one, in Fig. 5b, is the deflection of the bot-

tom of the rail, and the second one, in Fig. 5c, the 

deflection of its neutral line. The plots contain two 

curves presenting the results for the actual boundary 

conditions, red curves, and the results for the case of 

boundary conditions applied to the neutral line, blue 

curves.  

 

When two curves on both plots are compared it can 

be seen that the actual boundary conditions results in 

higher deflection at most points of the rail. The big-

gest difference occurs in the mid-length of the rail for 

the deflection of the neutral line. The discrepancy 

equals 14% – the deflection for the actual boundary 

conditions equal to 0.1106 mm and for the boundary 

conditions realised on the neutral line equals 0.12573 

mm. However, this is mostly the effect of local inden-

tation which appear at the support due to which the 

whole rail moves down. 

To compare the FE results with the analytical ap-

proach presented in section 2, the FE model with bound-

ary conditions realized at the neutral line should be con-

sidered. Having this in mind one may see that the results 

are almost the same. The maximum deflection obtained 

from the analytical approach, equation (22), is equal to 

0.1100 mm whereas the same deflection given by the FE 

calculations is equal to 0.1106 mm. 

 

Fig. 5. Deflection of the rail: a) view of the FE result (200); b) deflection of the bottom; c) deflection of the neutral line 
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4. Conclusions 

In the paper the standard rail UIC 60 has been ana-

lysed treated as a beam on four supports. The goal of 

the investigation was to point out that for such struc-

tures shear stresses play a significant role in the de-

flection analysis. It is easy to see that the relative 

length of the rail span is very small (λ = L h⁄ ≅ 3.5), 

therefore, it is necessary to analyze the rail bending 

taking into account the shear effect. The presented 

analytical solution with consideration of this effect is 

consistent with the numerical (FEM) one. On the oth-

er hand, the analytical solution without shear effect is 

significantly smaller, approximately 2.5 times, than 

the numerical (FEM) one. This shows that taking the 

shear stresses into account significantly improves the 

analytical solutions of problems related to short beams 

and makes them more realistic. The use of classical 

Euler-Bernoulli theory, valid for relatively long 

beams, in case of short beams leads to underestimated 

values. It should be also pointed out, based on the 

results obtained from FE analysis, that the boundary 

conditions applied to the presented model influence 

both the bending behaviour and the value of deflection 

and should be selected carefully. 

The analytical approach presented in the paper al-

lows one to easily determine the deflection of differ-

ent types of rails or similar structures using equation 

(22) and determining the shear coefficient from equa-

tion (3). Additionally, based on formula (23) one may 

assess the deflection without shear stresses taken into 

account. Comparing these two results it is possible to 

estimate how these stresses influence the behaviour of 

the analysed structure. All the above-mentioned ana-

lytical formulae may simplify the engineering calcula-

tions of short I-beam-like structures and may serve as 

reference point for FE calculations. 

Having in mind already obtained results further re-

search can be planned. This may concern analysis of 

multi-span rails to analyse the behaviour of longer 

parts of railway tracks also with multiple forces ap-

plied which will simulate a train load. Another crucial 

topic can be the influence of the support stiffness 

since in actual railway tracks it may vary depending 

on a number of factors. This stiffness may influence 

the bending behaviour of the track as well as the be-

haviour of the train. This in turn may affect the safety 

of train travel.  
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