Concept of hazard identification for RAMS specification
More details
Hide details
Łukasiewicz Research Network – Poznan Institute of Technology, Institute, Polska
Poznan University of Technology, University, Polska
Submission date: 2023-12-11
Final revision date: 2023-12-20
Acceptance date: 2023-12-26
Online publication date: 2023-12-28
Publication date: 2023-12-28
Corresponding author
Maciej Krzysztof Nowicki   

Łukasiewicz Research Network – Poznan Institute of Technology, Institute, Estkowskiego 6, 61-755, Poznań, Polska
Rail Vehicles/Pojazdy Szynowe 2023,3-4,54-63
In parallel with the dynamic development of rail transport in terms of vehicle design, control systems, infrastructure issues, the development of processes and procedures in the area of safety management must also progress. This growing awareness was confirmed, among other things, by harmonising the content of the regulations on railway safety and interoperability, the safety certification of railway undertakings and the definition of the tasks and roles of national safety authorities. In effect, this was to enable the development of a single European railway area. An implementation tool that allows for a systematic approach to safety management processes and that enables the above requirements to be met is, among other things, RAMS analyses. A key step in the safety management process for specifying RAMS is hazard identification, which is particularly highlighted in PN EN 50126-2:2018 through the holistic model for risk assessment and control of railway system hazards (hourglass model). It places the hazard identification process in two stages, i.e. in the early development stage of the analysis (similar to other known risk management models) and in the hazard control stage. This positioning alone indicates the importance of the hazard identification process. On the comprehensiveness and detail of its implementation depends the validity of the final outcome of the RAMS analysis. The development of such a process for real technical facilities in a way that is consistent with the needs of RAMS analyses and, at the same time, ensures that satisfactory results of these analyses are achieved, has become the subject of this article.
Aven T. Risk analysis. John Wiley & Sons. 2015.
Baran I. Non-destructive testing of technical equipment using acoustic emission method (in Polish). Nondestructive Testing and Diagnostics. 2019;4:15-19.
Carter G, Smith AD. Safety hazard identification on construction projects. J Constr Eng M. 2006;132(2):197-205.
Felice F, Petrillo A. Methodological approach for performing human reliability and error analysis in railway transportation system. International Journal of Engineering and Technology. 2011;3(5):341-353.
Gill A, Kadziński A. Hazard identification model. Proceedings of 20th International Scientific Conference Transport Means (5-7 October 2016, Juodkrante, Lithuania), Kaunas University of Technology. 2016:885-890.
Gill A, Kadziński A. Hazard identification for the analysis domains in railway system (in Polish). Prace Naukowe Politechniki Warszawskiej. Transport. 2017;115:47-56.
Gill A, Kadziński A. Hazard record (in Polish). Autobusy technika, eksploatacja, systemy transportowe. 2016;12:158-161.
Gill A, Kobaszyńska-Twardowska A. Identyfikacja zagrożeń w wybranych strefach tramwaju z wykorzystaniem metody Bow-Tie. Logistyka. 2014;6:5514-5521.
Hwang JG, Jo HJ. Hazard identification of railway signaling system using PHA and HAZOP methods. International Journal of Automation and Power Engineering (IJAPE). 2013;2:32-39.
Leitner B. A general model for railway systems risk assessment with the use of railway accident scenarios analysis. Procedia Engineering. 2017;187:150-159.
Li Q, Zhang Z, Peng F. Identification for railway accident prevention: complex network-based model development and comparison. Entropy. 2021;23(7):864.
Macdonald D. Practical industrial safety, risk assessment and shutdown systems for industry. Elsevier 2004.
Nedeliakova E, Hranicky MP, Valla M. Risk identification methodology regarding the safety and quality of railway services. Production Engineering Archives. 2022;28(1):21-29.
PN-EN 50126-1:2018-02. Zastosowania kolejowe – specyfikowanie i wykazywanie niezawodności, dostępności, podatności utrzymaniowej i bezpieczeństwa (RAMS). Część 1: Proces ogólny RAMS. 01.02.2019.
PN-EN 50126-2:2018-02 Zastosowania kolejowe – specyfikowanie i wykazywanie niezawodności, dostępności, podatności utrzymaniowej i bezpieczeństwa (RAMS). – Część 2: Sposoby podejścia do bezpieczeństwa.
PN-EN 50129:2019-01 Zastosowania kolejowe – systemy łączności, przetwarzania danych i sterowania ruchem – Elektroniczne systemy sterowania ruchem związane z bezpieczeństwem.
PN-EN 61882. Badania zagrożeń i zdolności do działania (badania HAZOP) – Przewodnik zastosowań, Polski Komitet Normalizacyjny, Warszawa 2016.
Ranachowski Z. Application of acoustic emission to fault diagnostics in civil engineering (in Polish). Drogi i mosty. 2012;2:151-173.
Rozporządzenie Wykonawcze Komisji (UE) nr 402/2013 z dnia 30 kwietnia 2013 r. w sprawie wspólnej metody oceny bezpieczeństwa w zakresie wyceny i oceny ryzyka i uchylające rozporządzenie (WE).
Schulze J. Improvement of hazard identification in railway software. Master’s Thesis in Secure and Dependable Computer Systems. Chalmers University of Technology. Goteborg 2010. https://publications.lib.chalm....
Smoczyński P, Gill A, Motyl M, Babiak A. How to do it with sticky notes: a method for exploring expert knowledge to prepare guidelines for practice in railway vehicle maintenance. Transport Problems. 2021;16(1):153-164.
Vincoli JW. Basic guide to system safety. Third Edition. John Wiley & Sons Inc. Wiley 2014.
Wang J, Gao S, Yu L, Zhang D, Xie C, Chen K et al. Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model. Reliab Eng Syst Safe. 2023;231:109016.
Wang LC. Hazards identification model for rail rapid transit accidents. J Mar Sci Technol. 2004;12(2):78-85.
Zhang Y, Fom DD. Hazard identification and risk assessment of Abuja rail mass transit. Transportation Safety and Environment. 2022;4(2):1-8.
Journals System - logo
Scroll to top