PL EN
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Bezpieczeństwo pasażerów w transporcie szynowym jest jednym z najważniejszych aspektów konstrukcji pojazdów szynowych. Utrzymanie niskich statystyk śmiertelności tej gałęzi transportu wymaga rozwoju systemów transportowych, ale także dalszego rozwoju materiałów i systemów stosowanych w konstrukcji pojazdów, które poruszają się po torach Polski i Świata. W niniejszym artykule przedstawione zostały zagadnienia bezpieczeństwa pasywnego na podstawie konstrukcji lekkiego pojazdu szynowego typu 227M.
 
REFERENCJE (23)
1.
UTK: Ocena funkcjonowania rynku transportu kolejowego i stanu bezpieczeństwa ruchu kolejowego w 2015 roku.
 
2.
UTK: Raport w Sprawie Bezpieczeństwa 2020.
 
3.
Shorokhov S. G., Bondarenko O. I., Kobishanov V. V.: Prediction of injury to passengers of railway rolling stock based on modern physical simulation methods. Journal of Physics: Conference Series. 2019, Vol. 1399. No. 5. IOP Publishing. https://doi.org/10.1088/1742-6....
 
4.
Frączek R., Pałdyna M., Miszczak K., Orzechowski W., Kawałek Ł., Nycz, B. D.: Modernization of the head structure of the ED72 electrical train unit. Mechanik. 2019, no 1. https://doi.org/10.17814/mecha....
 
5.
Sobolevska M., Horobets D., Syrota S.: Development of passive protection devices for a power head of a high-speed multiple unit train at its collisions. IOP Conference Series: Materials Science and Engineering. 2020, Vol. 985. No. 1. IOP Publishing. https://doi.org/10.1088/1757-8....
 
6.
MacNeill, R. A., Kirkpatrick, S. W., Bocchieri, R. T., Gough, G.: Development of a Prototype Retrofit Bumper for Improved Light Rail Vehicle Safety. ASME/IEEE Joint Rail Conference. American Society of Mechanical Engineers. 2015, Vol. 56451, p. V001T06A020.
 
7.
Materiały firmy H. Cegielski - Fabryka Pojazdów Szynowych Sp. z o.o.
 
8.
Xie S., Du X., Zhou H., Wang J., Chen, P.: Crashworthiness of Nomex® honeycomb-filled anti-climbing energy absorbing devices. International journal of crashworthiness. 2021, 26(2), 121-132. https://doi.org/10.1080/135882....
 
9.
Li Y. R., Zhu T., Tang Z., Xiao S. N., Xie J. K., Liu Z. B., Xiao S. D.: Inversion prediction of back propagation neural network in collision analysis of anti-climbing device. Advances in Mechanical Engineering. 2020, 12(5), 1687814020922050. https://doi.org/10.1177/168781....
 
10.
Yao S., Xiao X., Xu P., Qu Q., Che Q.: The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles. Thin-walled structures. 2018, 123, 360-370. https://doi.org/10.1016/j.tws.....
 
11.
Estrada Q., Szwedowicz D., Rodriguez-Mendez A., Elías-Espinosa M., Silva-Aceves J., Bedolla-Hernández J., Gómez-Vargas O. A.: Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bi-tubular profiles. Thin-Walled Structures. 2019, 140, 43-59. https://doi.org/10.1016/j.tws.....
 
12.
Sobolevska M., Telychko I.: Passive safety of high-speed passenger trains at accident collisions on 1520 mm gauge railways. Transport problems. 2017, 12. https://doi.org/10.20858/tp.20....
 
13.
Sobolevska M., Horobets D., Syrota S.: Development of passive protection devices for a power head of a high-speed multiple unit train at its collisions. In IOP Conference Series: Materials Science and Engineering. 2020, 985(1), p. 012016). IOP Publishing. https://doi.org/10.1088/1757-8....
 
14.
Li B., Lu Z., Yan K., Lu S., Kong L., Xu, P.: Experimental study of a honeycomb energy-absorbing device for high-speed trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2020, 234(10), 1170-1183. https://doi.org/10.1177/095440....
 
15.
Yao S., Li Z., Yan J., Xu P., Peng Y.: Analysis and parameters optimization of an expanding energy absorbing structure for a rail vehicle coupler. Thin-Walled Structures. 2018, 125, 129-139. https://doi.org/10.1016/j.tws.....
 
16.
Zhu T., Liu S., Xiao S. N., Che Q.: Train collision dynamic model considering longitudinal and vertical coupling. Advances in Mechanical Engineering. 2019, 11(1), 1687814018823966. https://doi.org/10.1177/168781....
 
17.
Jackiewicz J.: Coupler force reduction method for multiple-unit trains using a new hierarchical control system. Railway Engineering Science. 2021, 29(2), 163–182. https://doi.org/10.1007/s40534....
 
18.
Wei L., Zhang L., Tong X., Cui K.: Crashworthiness study of a subway vehicle collision accident based on finite-element methods. International journal of crashworthiness. 2021, 26(2), 159-170. https://doi.org/10.1080/135882....
 
19.
Yang C., Li Q., Xiao S., Wang X.: On the overriding issue of train front end collision in rail vehicle dynamics. Vehicle system dynamics. 2018, 56(4), 506-528. https://doi.org/10.1080/004231....
 
20.
Yao S., Zhu H., Yan K., Liu M., Xu P.: The derailment behaviour and mechanism of a subway train under frontal oblique collisions. International journal of crashworthiness. 2021, 26(2), 133-146. https://doi.org/10.1080/135882....
 
21.
EN 15227:2008+A1. Kolejnictwo – wymagania zderzeniowe dla pudeł pojazdów szynowych.
 
22.
EN 15227:2020. Kolejnictwo – wymagania zderzeniowe dla pojazdów szynowych.
 
23.
Materiały firmy Dellner.
 
eISSN:2719-9630
ISSN:0138-0370